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We deal with some problems concerning periodic solutions of perturbed dynamical 
systems. Sufficient conditions for the existence of periodic solution(s) of perturbed 
system are obtained. Moreover, we derive some properties of the set of all 
"perturbed" terms of a dynamical system under which the perturbed system has 
periodic solution(s). The method is based on the analysis of the space of all 
solutions of a nonperturbed dynamical system. 

1. I N T R O D U C T I O N  

The present paper deals with some problems concerning periodic solu- 
tions of  perturbed dynamical systems. 

Let f E C=(R n, R"). We consider the system 

= f ( x ) ,  x e R n (1) 

and its perturbed analog 

= f ( x )  + g(x,  ~), ~ ~ R m (2) 

where g ~ C~(R n • R m, Rn), g(x,  0) = 0. Let x = ~(t) be a nontrivial periodic 
solution of  the nonperturbed system (1). 

The classical statement of  the problem of  the existence of periodic 
solutions of  perturbed systems is to determine conditions such that for all "sup- 
norm small" functions g the system (2) has periodic solution (Coddington and 
Levinson, 1955; Massera, 1950; Rouche et  al., 1977; Nemistsky and Stepanov, 
1949; Yoshizawa, 1966) [for a detailed survey see Li (1981)]. Most results 
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in the cited books and papers are based on the investigation of the Liapunov 
function for the system (1). 

In the present paper, we assume that both functions f and g are given. 
We shall consider the following problems: 

�9 The existence of periodic solution(s) of the perturbed system (2). We 
obtain the "maximal" subspace R d C R m such that if e �9 R '~, �9 = 
(el, �9 �9 �9 R d, �9 = 0, then the perturbed system (2) possesses 
periodic solution(s). 

�9 The "description" of the set of all functions g for which the perturbed 
system (2) has periodic solution(s). 

�9 The "maximal" deviation (from zero) of the function g such that the 
perturbed system (2) has periodic solution(s). 

Some analogous results are introduced in Yoshizawa (1 966, Chapter VI, 
w167 29). 

The paper consists of four sections. In Section 2 we investigate "small 
parametric" extensions of the solutions of the equation F(x, y) = 0, where 
F: ~ • 91 ---> ~ ;  ~ ,  91, ~ are Hilbert spaces and F(0, 0) = 0. In Lemma 1 
we obtain conditions under which there exist smooth functions f = f(v) and 
g = g(v) such that f(0) = 0, g(0) = 0, F(f(v), g(v)) = 0, where v is a 
"parametric" vector with small enough II vii. Lemma 2 establishes a connection 
between the problem of "small parametric" extensions of  the solution of the 
equation F(x, y) = 0 and Fredholmness of the operator D~F(0, 0) (Kirilov 
and Gvishiany, 1979; Krein, 1967; Hutson and Pym, 1980). 

Section 3 deals with our main results. Applying Lemmas 1 and 2, we 
prove the existence of periodic solutions of the perturbed system (2). Theorem 
1 gives conditions for the existence of periodic solutions without a changing 
of the period [the period of the solution(s) of the perturbed system is the 
same as the period of the solution of the nonperturbed system]. In Theorem 
2 we obtain conditions for the existence of periodic solutions with "small" 
change of the period. Some cases of specific perturbation of the system (1) 
and applications of Theorems 1 and 2 are considered. 

2. A MODIFICATION OF I M P L I C I T  FUNCTION T H E O R E M  

Let ~,  9t, and ~ be Hilbert spaces. We shall use the following notation: 
~) 91 denotes the direct sum of ~ and 91. If ~/" is a closed subspace of ~,  

then ~177 denotes the orthogonal complement of ~ We set B~e(x0, r) = {x 
�9 ~: IIx - x011 < r}, where Xo �9 ~ ,  r > 0, and I1"11 is the norm in ~.  

Let F: ~ • 91 ---> ~ ,  (x, y) ---> F(x, y) be a C~-smooth map, K >-- 1. We 
shall denote by DxF(x, y) [DyF(x, y)] the derivative of F with respect to the 
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first (second) argument. If L: �9 ---) ~ is a linear operator, then ker L (im L) 
denotes the kernel (range) of L. 

First, we shall prove the following lemma. 

Lemma 1. Let the following conditions hold: 
1. ~ ,  otd, and ~ are Hilbert spaces; F: ~ • ~ ~ ~ is a CI-smooth map 

and F(0, 0) = 0. 
2. There exists a closed subspace W" C_ (ker DyF(0, 0)) • such that 

dim ker D~F(0, 0) = dim ~1; = d < oo (3) 

and 

= im DxF(0, 0) q) im DyF(0, 0)1~ 

3. There exists a number M > 0 such that 

(4) 

Jr4 
IID~F(x, v) - D~F(x, o)11 - 2 Ilvll, (x, v) ~ ~ • ~177 ct ~ {x, y} (5) 

Then: 
1. There exist a number rl > 0 and unique Ct-smooth maps f. B~l(0, rl) 

---) ~ and g: B~• rl) --~ ~ such that f(0) = 0, g(0) = 0, and 

F(f(v) ,  g(v)) = 0 for any v ~ By• rt) (6) 

2. If the operator DyF(0, 0) I~-t is an isomorphism between the Hilbert 
spaces ~177 and im DyF(0, 0)lye• then there exists r'l e (0, rt) such that 
the maps 

f l  B,1u 1 (0,r~) and g l Bw.l.(0,rl) 

are embeddings. 
3. Let "trx: ~ • 0-9 --~ �9 ['try: �9 • 0-9 --~ 0-9] given by 7rx(x, y) = x [-try(x, 

y) = y] be the projection on ~(0td), and let L(x, y) be a bounded linear operator 
defined by 

L(x, y): ~ • ~ ---) ~ ,  L(x, y) = DxF(x, y) o "trx + OyF(x, y) o "try (7) 

Let L(0, 0) be an isomorphism, l~ex~ be the identity on the space ~ • ~ ,  
and the numbers r2, r3 > 0 be chosen such that 

II1~• - L-~(0, O)L(x, 0)11 < 1/4 for any x ~ B~e(0, r2) (8) 

r3MIIL-~(O, O)ll < 1/8 (9) 

IIL-~(0, 0)II'IIL(0, y)ll < r214 for any y ~ B~(0, r3) (10) 

Then rl ~ r3 and (f(v), g(v)) E B~e• r2) for any v E B~-L(0, r0. 
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Proof. Let ~?l = (ker DxF(0, 0)) -L x ~16. We consider the space ~l  x ~14 f• 
If (u, v) ~ ~l x ~ then u = (u', u"), where u' a (ker DxF(0, 0)) • 

and u" E W'. From (3) it follows that the Hilbert spaces ker DxF(0, 0) and 
W" are isomorphic: ker DxF(0, 0) ~-- ~4 f. That is why we may assume u" 
ker DxF(0, 0), i.e., u ~ ~E. On the other hand, the inclusions u" ~ ~ and v 

~14 f i  yield (u", v) ~ ~ .  
Therefore, each point (u, v) e ~ t  • ~14fl determines a point (u, (u", v)) 

E ~g X ~ ,  Let us consider the map G: ~gl x ~l/If" ---> ~ given by G(u, v) = 
F(u, w), where u = (u', u") E ~l  = ~? and w = (u", v) E ~ 

Some properties of the map G are as follows: 
(a) G = G(u, v) is a CI-smooth map and G(0, 0) = 0. 
(b) D,G(0, 0)u = DxF(0, 0)u + DyF(0, 0)w0, where u = (u' ,  u") ~ ~gl, 

Wo = (u", O) ~ ~ .  
(c) The linear operator DuG(0, 0): ~?l ---> ~ is an isomorphism. 
Indeed, let u E ~l\{0}. We assume that DuG(0, 0)u = 0. From (b) it 

follows that -D~,F(0, 0)(u", 0) E im D~F(0, 0) and u" E ~i4f. On the other 
hand, formula (4) implies im DxF(0, 0) f3 im DyF(0, 0)Iv/ = {0}. Hence, 
u" = 0, i.e., u = (u', 0). Then DuG(0, 0)u = D~F(0, 0)(u', 0) =~ 0, because 
of u' e (ker DxF(0, 0)) • 

This contradiction provides that the operator DuG(0, 0) is an injection. 
Let z E ~ .  From condition 3 of the lemma it follows that there exist 

unique points zl E im DxF(0, 0) and z2 e im DyF(0, 0)l~r such that z = zl 
+ z2. We choose the points x E ~ and u" ~ ~4 c such that zl = DxF(0, 0)x, 
z2 = DyF(0, 0)w0, where w0 = (u", 0). Then z = DuG(0, 0)(x, y). 

Thus DuG(0, 0) is a surjection, i.e., DuG(0, 0) is an isomorphism. 
(d) If (u, v) ~ ~t  x ~ f ' ,  then 

IIO.G(u, v) - DuG(u, 0)ll -< MIIvll 

Indeed (see condition 4 of the lemma) 

IID.G(u, v) - DuG(u, 0)11 

<- IID.F(u,  v) - DuE(u, 0)11 + IIDvF(u, v) - DyE(u, 0)11 

--< Mllvll 

for any (u, v) E ~El X ~14 c• ~- ~ X ~14 f• 

Now we shall prove the assertions of Lemma 1. 
1. From (a), (c), continuity of the operators DxF(0, 0) and DyF(0, 0), 

and the Implicit Functional Theorem (Hutson and Pym, 1980, Theorem 4.4.9) 
it follows that there exist r~ > 0 and a unique function h: Bye• rl) --~ ~?~ 
such that G(h(v), v) = 0 for any v E B~ ' (0 ,  r0. Let I: ~ ---> ~? be the 
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operator of isomorphism between the spaces ~ and ~t .  We set f ( v )  = I o 
h(v) and g(v) = (e o h(v), v), where e: ~1 ---> ~ is a projection. Then F(f(v), 
g(v)) = G(h(v),  v) = 0 for any v E Bw• r0. 

2. The definition of the map h implies that D,G(0, 0)D~h(0) + DvG(0, 
0) = 0. But the linear operator D,G(0, 0) is an isomorphism [see (c)] and 
for any v ~ ~/-l, DvG(0, 0)v = DyF(0, 0)if, where ~ = (0, v) e ~ .  Then 
the linear operator 

D~h(0) = - (D,G(0,  0))-ID~G(0, 0): ~177 ---> 

is an isomorphism, too. 
Therefore, property 3 of the lemma is a result of the Inverse Mapping 

Theorem (Nitecki, 1971, Chapter 2, w 
3. This follows similarly as in part 1, making use of Theorem 4.4.10 

from Hutson and Pym (1980). 
Lemma 1 is proved. 

Before giving a property of map F equivalent to (4), we shall recall the 
definition of the Fredholm linear operator. 

Let L: ~ ~ ~ be a bounded linear operator and let coker L = ~ / im L 
be the cokernel of L. The linear operator L is said to be Fredholm with index 
zero if dim ker L < o% dim coker L < 0% and dim ker L = dim coker L 
(Kirilov and Gvishiany, 1979; Krein, 1967; Hutson and Pym, 1980). 

Lemma 2. Let the following conditions hold: 

1. ~,  ~ ,  and ~ are Hilbert spaces, F: �9 • 0ld __> ~ is a el-smooth map, 
and F(0, 0) = 0. 

2. There exists a closed subspace ~lf C (ker DyF(0, 0)) • such that 
formula (3) is valid and let 

im D~F(0, 0) tq im DyF(0, 0) lw = {0} ( l l )  

Then equali.ty (4) is valid if and only if D~F(0, 0) is a Fredholm operator 
with index zero, i.e., 

dim ker DxF(0, 0) = dim coker DxF(0, 0) (12) 

Proof. Let formula (4) be valid. Then 

dim ker DxF(0, 0) = dim q,V 
= dim im DyF(0, 0)lw 
= dim coker DxF(0, 0) 

due to the fact that DyF(0, 0)I w is a nonsingular operator (see condition 2). 
Hence DxF(0, 0) is a Fredholm operator with index zero. 
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Let D/F(0, 0) be a Fredholm operator with index zero. First we shall 
prove that there exists a finite-dimensional subspace ~ C ~ such that ~ = 

~ im DxF(0, 0). 
Let {~i: i �9 {1 . . . . .  13}} be a basis for coker DxF(0, 0); zi represent 

the class ~;, i �9 {1 . . . . .  13}; ~t denotes the linear closure of  {z,-: i �9 {1, 
. . . .  13} }; z �9 ~ and $ is the corresponding vector in coker D~F(0, 0). Then 
there exists a unique sequence {ci: i �9 {1 . . . . .  13}} C R such that ~ = 
E~=t c;$i. From the definition of factor space it follows that z = E,~=l cizi + 
t, where t �9 im D~F(0, 0). Therefore, ~ = ~t G im D~F(0, 0). 

The equalities 

dim ~ = codim im DxF(0, 0) = dim ker D~F(0, 0) 

= dim ~14/" = dim im DyF(0, 0)lw 

yield that the spaces ~ and im DyF(0, 0)Iw are isomorphic. That is why the 
equality (11) implies ~t = im DyF(0, 0)Iw. Therefore formula (4) is fulfilled. 

The proof is completed. 

3. PERIODIC S O L U T I O N S  OF P E R T U R B E D  S Y S T E M  

Let f �9 C| ", R"). We consider the system 

Jt = f (x ) ,  x e R" (13) 

and its perturbed analog 

= f ( x )  + g(x ,  e),  ~ �9 R m (14) 

where g �9 C| x R m, R"). 
First we introduce the general definition of structurally stable periodic 

solutions of the system (13). 

Def in i t ion  1. Let At be a subset in C| X R m, R") and let the zero 
function be a limit point of At. We shall say that the periodic solution x = 
~(t) of system (13) is At - s t ruc tura l l y  s tab le  if there exists a neighborhood ~ 
of zero in C~176 " X R m, R") such that the system 

.ic = f ( x )  + g(x,  e_) (15) 

has periodic solution x = ~(t)  for all g �9 OR f3 At and 

lim I[.~(t) - ~,(t)ll = 0 (16) 
Ilgll-~O.g ~.n.~ 

Clearly, if At = C~(R" X R", R") then we obtain the classical statement 
of the problem for the existence of periodic solution of the perturbed system 
(14). If 
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A = {g = (gl . . . . .  g,) E C~176 n X R m, Rn): 

gk(x,e)  . . . . .  g , (x , r  = 0  for s o m e k  e {1 . . . . .  n}} 

then we obtain a statement for the existence of  periodic solution under "small" 
deviation of some equations of system (14). 

In view of Definition 1, the basic question is: what is the "maximal" 
set A such that the system (13) has A-structurally stable periodic solution? 
Here the word "maximal" means that if A l  is a subset in C~176 • R m, R") 
such that the system (13) has At-structurally stable periodic solution, then 
A , C _ A .  

Unfortunately, the complicated structure of the "maximal" set A under 
consideration in Definition 1 impedes our intention to establish some results 
about the perturbed term g in system (14) (see "center-focus" problem). That 
is why we shall consider the case when the set A has "linear-like" structure. 

We introduce the following hypotheses: 

(H 1.1) All solutions of systems (13) and (14) are C~176 and their 
maximal interval of  existence and uniqueness is R. 

(HI.2) g(x, O) = O,x  ~ R". 
(HI.3) The system (13) has an to-periodic solution x = ~(t), to > 0. 

Definition 2. Let hypotheses (H1) hold. We shall say that the periodic 
solution x = ~(t) of  system (13) is (g, d)-structurally stable if there exist a 
neighborhood U of zero in R d, d ~ m, and a C=-smooth map e: U ~ R m 
such that e(0) = 0, the system 

= f (x )  + g(x, e(v)) (17) 

has periodic solution x = .2v(t) for all v E U, and 

lim [l~(t) - 2v(t)ll = 0 (18) 
Ilvtl--~ 

Remark I. It is not difficult to see that for every system (13) there exists 
a function g = g(x, ~) such that the to-periodic solution x = .2(t) of  (13) is 
(g, n)-structurally stable. Indeed, if we set g(x, e) = f ( x  - ~) - f (x) ,  ~ E 
R", then the system (17) has to-periodic solution 2~(t) = 2(t) + ~. 

Obviously, there exist functions f = f ( x )  and g = g(x, ~) such that the 
system (13) has periodic solution and the system (14) does not have any 
periodic solution. 

Remark 2. If for each g ~ C~*(R" • R, R") the periodic solution x = 2(t) 
of system (13) is (g, 1)-structurally stable, we obtain the classical statement of 
the problem for the existence of periodic solution of  the perturbed system (14). 
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Let A(t) = Dxf(X)Ix=7~t) and A*(t) be the transposit ion o f  A(t). We 
consider  the sys tem 

Yc = A(t)x, x �9 R" (19) 

and its conjugate  sys tem 

~J = -A*(t) t~,  d~ �9 R" (20) 

Let  {t~l(t) . . . . .  t~a(t)}, d --< n, be a basis for the space of  all periodic 
solutions o f  (20). We set 

f o ( 5  bij = ffJi(t), O...gg Oej (2(t), O) dt (21) 

where  i �9 { 1 . . . . .  d }, j �9 { 1 . . . . .  m }; ( . ,  �9 ) is the Eucl idean scalar product  
in R"; B = (bifl denotes the d X m matrix with e lements  (21). Let  Bk be the 
matr ix  with elements  b U, i �9 {1 . . . . .  k } , j  �9 {1 . . . . .  k}, k ----- d. 

Theorem 1. Let hypotheses  (H 1) be valid and let rank B = d. Then the 
periodic solution x = 2(0  of  sys tem (13) is (g,  d)-s t ructural ly  stable. More-  
over, there exists a number  ro > 0 such that i f x  = 2v(t) is a periodic solution 
of  the sys tem (17) and 

{2v(t): t �9 R} C 

then the period of  x = 2v(t) is (o. 

tO {Bg,(2(t), ro) } 
t ~ [0,to) 

Proof  Let x = x(t) be a solution o f  (13). We set 

y(t) = x(t) - 2(t) 

= {y �9 C=(R, R"): y(t  + co) = y(t), t �9 R}, ~ = R "  

F: ~g • R"  ---) ~ ,  F(y, ~) = y - f ( y  + 2(0)  + f (2( t ) )  - g (y  + 2(0,  ~) 

The  set ~ with scalar product  (Yl, Y2) = fS' (yl(t),  y2(t)) dt, Yl, Y2 �9 ~ ,  and 
corresponding norm is a Hilber t  space. 

We shall consider  the equat ion 

F(y, ~) = 0 (22) 

First, we shall verify condit ions 1 and 2 of  L e m m a  1. 
1. Obviously,  F is a C=-smooth  map;  if y(t) = O, t �9 R, and e = 0, 

then F(0, 0) = 0. 
2. F rom the definit ion o f  the map  F, it fol lows that 
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DYE(0, 0)y = ~9 - D~f(2(t))y - Dxg(~(t), O)y = y - A(t)y (23) 

DyE(0, 0)e = -Dxg(Y,(t), O)e 

Without loss of generality, we suppose that det Be 4: O. 
Let e E R m, e = ( e  l, e2), e I = (el . . . . .  Ca) ~ R e, e 2 = (ed+l . . . . .  era) 

E R "-'t, ~/" = {(e l, 0) ~ Rm: e t ~ Ra}. 
First, we shall prove that im DyF(0, 0) f3 im D,F(0, 0)lw = {0}. 
Indeed, let us suppose that there exists e E W~{0} such that D,F(0, 0)e 

im DyF(0, 0). Then there exists -q E ~ { 0 }  such that D~F(0, 0)e = DyF(0, 
0)+1, i.e., ~i = "q(t) is a solution of the system 

ql - a(t)'q = -D,g(~(t) ,  0)e (24) 

From Hartman (1964, Chapter XII, Theorem 1.2), it follows that the 
system (24) has a solution if and only if 

for all i e {1 . . . . .  d}. 
Therefore 

(t~i(t), D~g(2(t), O)e) at = o 

0 = <t~i(t), D,g(Y(t), 0)e> dt 

= ~Jik(t ) Ogk(~(t), O) 
k=l j = l  Oej ej dt 

 fo< > = ej ~( t ) ,  Og(2(t), O) dt 
j=l Oej 

d 

(25) 

j= I j=d+ ! 

where  ~i(t) = (~ id t )  . . . . .  ~i.(t)) and g(x, e) = (gl(x ,  e) . . . . .  g.(x, e)). F r o m  
the definition of the space W it follows that ey = 0, j E {d + 1 . . . . .  m}. 
Hence X]=t b i : j  = 0. The obtained equality contradicts det Bd 4: 0. Therefore, 
if e ~ W~{0}, then D~F(0, 0)e ~ im DYE(0, 0). 

From (23) it follows that ker Dy F(0, 0) consists of all to-periodic solutions 
of the system y = A(t)y, i.e., dim ker DyF(0, 0) = d = dim W. Hence formula 
(3) is true. 

We shall prove the Fredholm condition (12). From Hartman (1964, 
Chapter XII, Theorem 1.1) it follows that the system p - A(t)y = O, y ~ ~8, 
has a solution if and only if the system p - A(t)y = h(t), h ~ ~Sim DyF(0, 
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0), has no solution y E ~g. But the system ~ - A(t)y  = 0 has exactly d 
linearly independence solutions in space ~.  Therefore, dim coker DyF(0, 0) 
= d, i.e., the formula (12) is valid. 

Hence, condition 2 of  Lemma 1 follows from Lemma 2. 
Therefore, there exist a number rt > 0 and unique smooth maps y: 

BR"-a(0, rl) ---) ~ ,  v ---> y~, and e: BRm-a(0, rl) --~ R", v ---> e~, such that Y0 = 
0, t0 = 0, and 

F ( y ,  e,) = 0 for any v ~ BR-,-a(0, rl) 

Thus 

p~(t) - f ( y ~ ( t )  + ,2(t)) + f (2( t ) )  - g(y~(t) + 2(0,  ev) = 0 

Writing x~(t) = y~(t) + 2(0,  we obtain that 

Ycv(t) = f(xv(t))  + g(xv(t), ~ )  

i.e., the function x, E ~ is a solution of the perturbed system (17) for any 
v E BR,.-a(0, r0.  

Theorem 1 is proved. 
Let 

birn+l = (~li(t), ~(t)) dt (26) 

where i ~ {1 . . . . .  d}, B0 = (b U) denotes the d • (m + 1) matrix with 
elements (21) and (26). 

Theorem 2. Let hypotheses (HI)  hold and let rank B0 = d. Then the 
periodic solution x = 2(t) of  the system (13) is (g, d)-structurally stable. 

Proo f  The  proof of  Theorem 2 is similar to the proof of  Theorem 1, 
except for the choice of  the function F. Thus we sketch only some steps of  
the proof. 

We set 

y(t, cx) = x(t  + at)  - 2(0, a E R 

= {y E C| 2, R"): y( t  + to, a)  = y(t,  a) ,  t E R} ,  

F: ~ X R  1+m~R" 

o'td = R" 

F(y, (a,  ~)) = p(t, a )  - f ( y ( t ,  a )  + 2(t)) + f(~(t))  - g(y(t ,  a)  + 2(0,  ~) 

where x = x(t) is a solution of  (13) and the set ~ with scalar product (y~, 
Y2) = f~  (yt(t) ,  y2(t)) dt, Yt, Y2 • ~,  and the corresponding norm is Hil- 
bert space. 
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Then: 
1. If  a = 0, y(t)  = O, t ~ R, and r = 0, then F(0, (0, 0)) = 0. 
2. F rom the definition of  function F it fol lows that 

DyF(O, (0, 0))  = p - D, , f (~(t))y  - Dxg(~(t), 0)y = p - A( t )y  

Obviously  

D~y(t, Ot.)ly(t,0)= 0 = t~(t) 

because if  y(t,  0) = 0, then x(t)  = ~(t). Analogously,  we have 

D,,)(t ,  ct),y~t.o)= o = .~(t) + tx(t) 

Therefore  

D(~,,) F(0,  (0, 0 ) ) (a ,  r 

= D~,p(t, a),y(t,o)=o - D~f(~(t))D~,y(t,  ct),y(t.o)=o - D~g(~(t), 0)r 

= ~(t) + tx(t) - D, f (~( t ) ) t~( t )  - D~g(2(t), 0)~ 

= .~(t) - D,g(Y(t), 0)~ 

because x = 2 ( 0  is a solution of  (13),  i.e., x(t) - Dff(Y(t))~(t). 
The  assumption D~,,)F(0,  (0, 0))(a ,  e) ~ im DyF(0,  0) for some (a ,  ~) 

R ~+m is equivalent  to the existence o f  ~ ~ ~ such that 

"il - A(t) 'q = )(t)  - D~g(~(t), 0)r (27) 

The system (27) has a solution -q = ~10(t) e ~ if and only if 

o~(~i(t) ,  ) ( t )  - D~g(~(t), 0)~) dt  = 0, i E { 1 d} (28) 

From the formula  (28) and condit ion rank B0 = d it follows that there 
exists a d-dimensional  space 31/" C R t+m such that im DyF(0, (0, 0)) f'l im 
D(~.oF(0, (0, 0 ) ) lw  = 10}. 

From DyF(0,  (0, 0))  = ) - A(t)y,  it fol lows dim ker DyF(0, 0) = d = 
dim ~A/'. H e n c e  formula (3) is true. 

The  p roof  of  the Fredholm condit ion (12) is analogous to the correspond- 
ing part o f  the proof  o f  Theorem 1. 

Therefore ,  there exist a number  r] > 0 and unique smooth maps y: 
BRm-d(0 , r l )  ----> ~/~, v ----> y~, e: BRm-'~(0, r l )  ----> R m, v ---> ~v, and a:  BRm-a(0, rl) 
---> R, v ---> a~, such that Y0 = 0, r = 0, a0 = 0, and 

F ( y .  (r eta)) = 0 for any v E BRm-d(O , rl) 

Thus 

y~(t, ~ )  - f ( y ~ ( t ,  r + ~(t)) + f (~ ( t ) )  - g(y~(t,  eta) + ~(t), ~ )  = 0 
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Writing xv(t) = yv(t, eta) - .~(t), we obtain that 

yc~(O = f(x~(t)) + g(x.(t).  ~ )  

i.e., the function x~ e ~g is a solution of  the perturbed system (17) for any 
V E BRm-d(0, rl). 

This completes the proof. 

E x a m p l e  1. Consider the following system (Nemitsky and Stepanov, 
1949, Chapter II, w 

Yq = P ( x b  x2) = - x 2  + x 1 ( ~  + x 2 - I)  2p+I (29) 
Yc2 = Q(xl ,  X2)  = X l  q-  X2(X 2 + X 2 - -  1) 2p+I 

and its perturbed analog 

,r = -x2  + x t ( ~  + ~ -- 1) 2p+1 + gl(Xl,  X2, E) (30) 

YC2 = X~ + X2(X 2 + ~ -- 1) 2p+l + g2(xt, X2, ~.) 

where x = (xl, x2), p --> 1, the function g = (gl,  g2) satisfies hypotheses 
(HI) ,  and e ~ R. 

Obviously, the system (29) has a unique periodic solution {(xl, x2): xl 
- c o s t ,  x2 = s in t ,  t e R}. 

Let 

O(P(xt,  x2), Q(Xl, x2)) 
A(t)  = 

O(xl, x2) .q =cos t 
X2 =s in  I 

J-(x~l + ~- I)2p[(4p + 3)~ + ~- 1] 
= [ 1  + 2(2p + l)xlx2(~ + ~ - 1) 2p 

- I  + 2(2p + 1)xlx2(~ + x 2 - I) 2p ] 
(x 2 + ~ - l)2P[~ + (4p + 3)~ - ll/Ix,=c.o~, 

-J ix2=sln t 

[0  ~ 

Therefore, {d)l, t~2}, where t~, = (cos t, sin t) and ~z = ( - s i n  t, cos t), 
is a basis for the system t~ = A( t )~ ,  ~ ~ R 2. 

Thus if 

b,  = tbi. \ St (cos 

i = l o r 2  

t, sin t, 0), ~ (cos t, sin t, 0) dt  4: 0, 

then the system (30) has a 2"rr-periodic solution (see Theorem 1). 
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For example, if gt(xl, x2, e) = exl, g2(xl, x2, E) = Ex2, then the system 
(30) has a 2rr-pedodic solution. 

Example 2. Consider the two-dimensional system 

-'~1 = aXE --I- EgI (XI ,  X2) (31) 

~t2 = - a x l  + �9 x2) 

where a, �9 E R, a =b 0, gl, g2 E C(R 2, R). 
A classical result due to Poincar6 states that if the functions gt and g2 

satisfy the symmetry condition 

gl(--Xl, X2) = --gt(x2, X2) ,  g2(--Xl, X2) = g2(xt, X2) (32) 

then (31) has periodic solution with period near 2~r/I a l for sufficiently small 
�9 . In the present example, we shall apply Theorem l to prove that if equations 
(32) are valid and if 

02"~/~'~ gl(sin at, cos at)sin at + g2(sin at, cos at)cos at dt ~ 0 

then (31) has 2-tr/lal-periodic solution for sufficiently small �9 
The system -r = ax2, X2 = --OXl has 2"tr/lal-periodic solution -Ym(t) = 

sin at, 22(t) = cos at. Moreover, {d)l, t~2 }, where ~l = (sin at, cos at), ~2 
= ( - c o s  at, sin at) is a basis for the space of  all solutions of the system ~J 
= A(t)0, 0 E R 2, A(t) = [~ 8]. Let us calculate 

f 
2"n'/lal 

b=l = (t~t(t), (gl(~'l(/), x2(t)), g2(xl(t), x2(t)))) dt 
J0 

~ I r l l a [  

= gl(sin at, cos at)sin at + g2(sin at, cos at)cos at dt 
J - - ' f i l ia l  

I 
~rllal 

= 2 g~(sin at, cos at)sin at + g2(sin at, cos at)cos at dt =/= 0 
. /0 ,  

Therefore (see Theorem I), there exists rl > 0 such that if I�9 < rl, 
then the system (31) has 2"tr/lal-periodic solution. 

Let us remark that Theorem 2 cannot apply to the system (31), because 
rank B0 = 1, min{d, m + 1} = 2. 

Before giving some particular cases of  Theorems 1 and 2 we shall prove 
the following lemma. 

Lemma 3. Let hypotheses (HI. 1) and (HI.2) be valid. Then the following 
two statements are equivalent: 
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1. f~' (t~i(t), ~(t)) dt =/: 0 for some i ~ { 1 . . . . .  d }. 
2. 1 is a simple characteristic multiplier for (19). 

Proof. In Hartman (1 964, Chapter XII, Lemma 1.1) it is proved that the 
system (13) has nontrivial periodic solution x = ~(t) if and only if 1 is a 
characteristic multiplier for (19). 

Let us suppose that 1 is a nonsimple characteristic multiplier for (19). 
Then there exist matrices Al(t), A2(t), and A3(t ) such that: 

1. A~(t) is a nonsingular periodic matrix. The last column of Al(t) is 
,~(t). 

2. As(t) is a nonsingular matrix. 
3. If X(t) is a fundamental matrix of (19), then 

rA2(t) 0 1 

where 0 is a zero matrix with proper dimension. 

Then 

011 011 )((t):ftz(t)[~ilttl I: 0 +A'(t)~LA3(t) I: 01 

o r  

[ [A2(t) 000 l-l[-A~(t) 0 ]] -I 
A~(t)= f((t)-A'(t)~ A3(t) [1 0 ] J J ~  A3(t) I I  ~ 

But ~'(t) = A(t)X(t) and 

A2(t) 0 - z ~A~- l(t) 0 

A3(t) [ I  01]] = L Aa(t) l i t  ~ l ]  

where 

- 1 0 ]A3(t)A~l(t) A4(t) = t - 1 

(Hom and Johnson, 1986, w 
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Therefore 

At(t)=A(t)A,(t)_A,(t)[::::: L tFOOOlIP~ O]]L A4(t) [ !tO ]]01 
Thus the (n - l)th column a,- t ( t )  of  Al(t) satisfies 

an-~(t) = A(t)an-l(t) - ~(t) 

Consequently (Hartman, 1964, Chapter XII, Theorem 1.2) 

i~ (t~i(t),)(t)> dt = 0, i ~ { 1 d } (33) 

Equation (33) contradicts assumption 1 of the lemma. 
Lemma 3 is proved. 

Corollary 1. Let the hypotheses (HI) be valid and let 

i~ (t~i(t), ~(t)) dt r 0 for some i ~ { 1 d } 

Then the periodic solution x = .2(t) of  system (13) is structurally stable, 
i.e., for any g e C=(R ", R"), g(x, O) = O, (ag/Ox)(x, 0) = 0 there exists g > 
0 such that the system 

Yc = f ( x )  + g(x, v), v e ( - ~ ,  ~) 

has a periodic solution x = 2v(t) and 

lim II~(t) - ~v(/)ll = 0 
H---~0 

The proof of Corollary 1 follows from Theorem 2. 

Corollary 2. Let the hypotheses (HI) be satisfied and let 1 be a simple 
characteristic multiplier for (19). Then the periodic solution x = 2(t) of  the 
system (13) is structurally stable. 

The proof of Corollary 2 follows from Theorem 2 and Lemma 3. 

Remark 3. One may find theorems analogous to Corollary 2 in Hartman 
(1964, Chapter XII, Theorem 2.2) or Rouche et aL (1977), where the proof 
is based on the classical Implicit Function Theorem. Thus Theorems 1 and 
2 generalized cited results. 

Remark 4. The following well-known result immediately follows from 
Corollary 2. If the periodic solution x = ~(t) of the system (13) is hyperbolic, 
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then it is structurally stable [for the definition of a hyperbolic periodic orbit of 
an autonomous system see Palis and De Melo (1982, Chapter 3, w167 1.2-1.3)]. 
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