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Periodic Solutions and Perturbations of
Dynamical Systems

Svetoslav Ivanov Nenov!
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We deal with some problems concerning periodic solutions of perturbed dynamical
systems. Sufficient conditions for the existence of periodic solution(s) of perturbed
system are obtained. Moreover, we derive some properties of the set of all
“perturbed” terms of a dynamical system under which the perturbed system has
periodic solution(s). The method is based on the analysis of the space of all
solutions of a nonperturbed dynamical system.

1. INTRODUCTION

The present paper deals with some problems concerning periodic solu-
tions of perturbed dynamical systems.
Let f € C*(R", R"). We consider the system

X = f(x), xeR* )]
and its perturbed analog
x=f(x) +gxe€), €eR” (2)

where g € C*(R"” X R™, R"), g(x, 0) = 0. Let x = X(r) be a nontrivial periodic
solution of the nonperturbed system (1).

The classical statement of the problem of the existence of periodic
solutions of perturbed systems is to determine conditions such that for all “sup-
norm small” functions g the system (2) has periodic solution (Coddington and
Levinson, 1955; Massera, 1950; Rouche et al., 1977; Nemistsky and Stepanov,
1949; Yoshizawa, 1966) [for a detailed survey see Li (1981)]. Most results
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in the cited books and papers are based on the investigation of the Liapunov
function for the system (1).

In the present paper, we assume that both functions f and g are given.
We shall consider the following problems:

* The existence of periodic solution(s) of the perturbed system (2). We
obtain the “maximal” subspace RY C R™ such that if e € R, € =
(€1, €), € € R? €, = 0, then the perturbed system (2) possesses
periodic solution(s).

* The *“description” of the set of all functions g for which the perturbed
system (2) has periodic solution(s).

» The “maximal” deviation (from zero) of the function g such that the
perturbed system (2) has periodic solution(s).

Some analogous results are introduced in Yoshizawa (1966, Chapter VI,
§§25, 29).

The paper consists of four sections. In Section 2 we investigate “small
parametric” extensions of the solutions of the equation F(x, y) = 0, where
FFEZXY>% % Y, % are Hilbert spaces and F(0, 0) = 0. In Lemma 1
we obtain conditions under which there exist smooth functions f = f(v) and
g = g(v) such that f(0) = 0, g(0) = 0; F(f(v), g(v)) = 0, where v is a
“parametric” vector with small enough ||v]|. Lemma 2 establishes a connection
between the problem of “small parametric” extensions of the solution of the
equation F(x, y) = 0 and Fredholmness of the operator D, F(0, 0) (Kirilov
and Gvishiany, 1979; Krein, 1967; Hutson and Pym, 1980).

Section 3 deals with our main results. Applying Lemmas 1 and 2, we
prove the existence of periodic solutions of the perturbed system (2). Theorem
1 gives conditions for the existence of periodic solutions without a changing
of the period [the period of the solution(s) of the perturbed system is the
same as the period of the solution of the nonperturbed system]. In Theorem
2 we obtain conditions for the existence of periodic solutions with “small”
change of the period. Some cases of specific perturbation of the system (1)
and applications of Theorems 1 and 2 are considered.

2. A MODIFICATION OF IMPLICIT FUNCTION THEOREM

Let &, %, and % be Hilbert spaces. We shall use the following notation:
X D %Y denotes the direct sum of & and Y. If W is a closed subspace of %,
then W+ denotes the orthogonal complement of W. We set Bg(x,, ) = {x
€ &: |lx — x|l < r}, where xo € &, r > 0, and ||*|| is the norm in ¥.

Let F: X XY > %, (x, y) > F(x, y) be a C*-smooth map, k = 1. We
shall denote by D, F(x, y) [D, F(x, y)] the derivative of F with respect to the
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first (second) argument. If L: X — Y is a linear operator, then ker L (im L)
denotes the kernel (range) of L.
First, we shall prove the following lemma.

Lemma 1. Let the following conditions hold:

1. %, %, and % are Hilbert spaces; F: £ X ¥ — % is a C!-smooth map
and F(0, 0) = 0.

2. There exists a closed subspace W C (ker D, F(0, 0))* such that

dimker D, F0,0) =dmW =d < » 3)
and
% = im D, F(0, 0) ® im D, F(0, 0) |+ @

3. There exists a number M > 0 such that
ID.FG ) ~ DF O = 2o, ) e ZXWE aclxny) ©)

Then:
1. There exist a number r; > 0 and unique C'-smooth maps . Bo1(0, ry)
— ¥ and g: By+(0, r;) > % such that f(0) = 0, g(0) = 0, and

F(f(v), gv)) = 0 forany v € By (0, ry) 6)

2. If the operator D, F(0, 0) |+ is an isomorphism between the Hilbert
spaces W+ and im D, F(0, 0)l+, then there exists r; e (0, ry) such that
the maps

fiByiosy  and  glayro0)

are embeddings.

3.Letm: & XY - & [w: X XY — Y] given by m(x, y) = x [w,(x,
y) = y] be the projection on (%), and let L(x, y) be a bounded linear operator
defined by

Lix,y): XY %, Lx,y) = D.Fx,y) e m, + D,F(x,y) e m, (7)

Let L(0, 0) be an isomorphism, 1gyxq be the identity on the space ¥ X ¥,
and the numbers r,, r; > 0 be chosen such that

11gxay — L™'(0, O)L(x, 0)|| < 1/4 for any x e Bg(0, ry) (8)
rsM|IL™'0, 0)|| < 1/8 )
IL7'0, O)I- 1L, )l < ro/4  forany y e By(0,r5) (10)

Then r; = r; and (f(v), g(v)) € Byxa(0, rp) for any v € By 1(0, ry).
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Proof. Let ¥, = (ker D, F(0, 0))* X W. We consider the space | X W*.

If (u,v) € £, X W+, then u = (u’, u"), where u’ € (ker D, F(0, 0))*
and «" € W. From (3) it follows that the Hilbert spaces ker D, F(0, 0) and
W are isomorphic: ker D, F(0, 0) = W. That is why we may assume u” e
ker D, F(0, 0), i.e., u € %. On the other hand, the inclusions «¥” € W and v
e W yield (W', v) € Y.

Therefore, each point (4, v) € £, X W+ determines a point (u, (1", v))
e X X %, Let us consider the map G: &, X W' — % given by G(u, v) =
Fu, w), where u = (W', ") e =X andw = (4", v) € Y.

Some properties of the map G are as follows:

(a) G = G(u, v) is a C'-smooth map and G(0, 0) = 0.

(b) D,G(0, O)u = D, F(0, O)u + D,F(0, O)w,, where u = (u', u") € &,,
we = (", 0) e ¥.

(c) The linear operator D,G(0, 0): &, — % is an isomorphism.

Indeed, let « € Z\{0}. We assume that D,G(0, O)u = 0. From (b) it
follows that —D,F(0, 0)(»", 0) € im D,F(0, 0) and " € W. On the other
hand, formula (4) implies im D, F(0, 0) N im D,F(0, 0)Iy = {0}. Hence,
W =0, 1e.,u = (u',0). Then D,GO, O)u = D,F(0, O)}u’, 0) # 0, because
of u' e (ker D,F(0, 0))*.

This contradiction provides that the operator D,G(0, 0) is an injection.

Let z € %. From condition 3 of the lemma it follows that there exist
unique points z; € im D, F(0, 0) and z; € im D, F(0, 0) |4 such that z = z,
+ z,. We choose the points x € ¥ and 4" € W such that z; = D, F(0, O)x,
22 = D,F(0, O)w,, where wy = (", 0). Then z = D,G(0, 0)(x, y).

Thus D,G(0, 0) is a surjection, i.e., D,G(0, 0) is an isomorphism.

) If (u, v) € X, X W+, then

ID.G(u, v) — DG, 0| = M||vl|
Indeed (see condition 4 of the lemma)
ID.G(x, v) ~ D,G(u, 0)]|
= [|D,F(u, v) — D, F(u, O)|| + |ID,F(u, v) — D, F(u, O
= M|y
for any (u,v) € & X WL =¥ X W

Now we shall prove the assertions of Lemma 1.

1. From (a), (c), continuity of the operators D, F(0, 0) and D, F(0, 0),
and the Implicit Functional Theorem (Hutson and Pym, 1980, Theorem 4.4.9)
it follows that there exist r, > 0 and a unique function A: By 1(0, r)) - %,
such that G(h(v), v) = O for any v € ByL(0, r). Let I: ¥, — ¥ be the
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operator of isomorphism between the spaces € and ¥,. We set f(v) = I ©
h(v) and g(v) = (e ° h(v), v), where e: &, — W is a projection. Then F(f(v),
gw)) = G(h(v), v) = 0 for any v e By1(0, r)).

2. The definition of the map 4 implies that D,G(0, 0)D,4(0) + D,G(0,
0) = 0. But the linear operator D,G(0, 0) is an isomorphism [see (c¢)] and
for any v € W+, D,G(0, O)v = D, F(0, 0)w, where w = (0, v) € Y. Then
the linear operator

D,n(0) = —(D,G(0, 0))"'D,G(0, 0): Wt &

is an isomorphism, too.

Therefore, property 3 of the lemma is a result of the Inverse Mapping
Theorem (Nitecki, 1971, Chapter 2, §1).

3. This follows similarly as in part 1, making use of Theorem 4.4.10
from Hutson and Pym (1980).

Lemma 1 is proved.

Before giving a property of map F equivalent to (4), we shall recall the
definition of the Fredholm linear operator.

Let L: £ — % be a bounded linear operator and let coker L = %/im L
be the cokernel of L. The linear operator L is said to be Fredholm with index
zero if dim ker L < oo, dim coker L < o, and dim ker L = dim coker L
(Kirilov and Gvishiany, 1979; Krein, 1967; Hutson and Pym, 1980).

Lemma 2. Let the following conditions hold:

1. %, %Y, and & are Hilbert spaces, F: £ X ¥ — % is a C'-smooth map,
and F(0, 0) = 0.

2. There exists a closed subspace W C (ker D,F(0, 0)* such that
formula (3) is valid and let

im D, F(0, 0) N im D, F(0, 0) I = {0} (an

Then equality (4) is valid if and only if D, F(0, 0) is a Fredholm operator
with index zero, i.c.,

dim ker D, F(0, 0) = dim coker D, F(0, 0) (12)
Proof. Let formula (4) be valid. Then

dim ker D_F(0, 0) = dim ‘W
= dim im D, F(0, 0) I
= dim coker D, F(0, 0)

due to the fact that D, F(0, 0)1+ is a nonsingular operator (see condition 2).
Hence D, F(0, 0) is a Fredholm operator with index zero.
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Let D,F(0, 0) be a Fredholm operator with index zero. First we shall
prove that there exists a finite-dimensional subspace R C % such that &% =
%R @ im D, F(0, 0).

Let {Z: i € {1,..., B}} be a basis for coker D,F(0, 0); z; represent
the class Z, i € {1, ..., B}; R denotes the linear closure of {z: i e {1,
..+, B}}; z € ¥ and £ is the corresponding vector in coker D, F(0, 0). Then
there exists a unique sequence {c: i € (1, ..., B}} C R such that 7 =

2&.| ¢;Z;. From the definition of factor space it follows that z = 38, ¢;z; +
t, where t € im D, F(0, 0). Therefore, # = R @ im D, F(0, 0).
The equalities

dim R = codim im D, F(0, 0) = dim ker D,F(0, 0)
= dim W = dim im D, F(0, 0) 4

yield that the spaces R and im D, F(0, 0) |+ are isomorphic. That is why the
equality (11) implies R = im D, F(0, 0) |. Therefore formula (4) is fulfilled.
The proof is completed.

3. PERIODIC SOLUTIONS OF PERTURBED SYSTEM
Let f € C®(R", R"). We consider the system
x = f(x), x e R (13)
and its perturbed analog
X = f(x) + gx, €), € € R" (14)

where g € C*(R* X R™, R").
First we introduce the general definition of structurally stable periodic
solutions of the system (13).

Definition 1. Let Ml be a subset in C*(R* X R™, R") and let the zero
function be a limit point of M. We shall say that the periodic solution x =
X(t) of system (13) is M-structurally stable if there exists a neighborhood U
of zero in C*(R" X R™, R") such that the system

x = f(x) + glx, € (15)
has periodic solution x = X(¢) for all g € AU N M and
lim  |[x(r) — X0l = 0 (16)
llgll—0.g UM

Clearly, if # = C*(R" X R™, R") then we obtain the classical statement
of the problem for the existence of periodic solution of the perturbed system
(14). If
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M={g=(g,...,8) € C°R" X R" R"Y):

gx, €)= ---=g(x,e)=0 forsomeke (1,...,n})

then we obtain a statement for the existence of periodic solution under “small”
deviation of some equations of system (14).

In view of Definition 1, the basic question is: what is the “maximal”
set M such that the system (13) has M-structurally stable periodic solution?
Here the word “maximal” means that if M, is a subset in C*(R” X R™ R")
such that the system (13) has M,-structurally stable periodic solution, then
M C M.

Unfortunately, the complicated structure of the “maximal” set M under
consideration in Definition 1 impedes our intention to establish some results
about the perturbed term g in system (14) (see “center-focus” problem). That
is why we shall consider the case when the set M has “linear-like” structure.

We introduce the following hypotheses:

(H1.1) All solutions of systems (13) and (14) are C*-smooth and their
maximal interval of existence and uniqueness is R.

(H1.2) g(x,0)=0,x € R".

(H1.3) The system (13) has an w-periodic solution x = X(f), @ > 0.

Definition 2. Let hypotheses (H1) hold. We shall say that the periodic
solution x = X(r) of system (13) is (g, d)-structurally stable if there exist a
neighborhood U of zero in R% d < m, and a C*-smooth map €: U — R™
such that €(0) = 0, the system

X = f(x) + g(x, €(v)) (17)
has periodic solution x = X,(¢) for all v € U, and

lim [|x(s) — x| = 0 (18)
[IMl—-0

Remark 1. It is not difficult to see that for every system (13) there exists
a function g = g(x, €) such that the w-periodic solution x = X() of (13) is
(g, n)-structurally stable. Indeed, if we set g(x, €) = f(x — €) — f(x), € €
R", then the system (17) has w-periodic solution X (f) = X(¢) + e.

Obviously, there exist functions f = f(x) and g = g(x, €) such that the
system (13) has periodic solution and the system (14) does not have any
periodic solution.

Remark 2. If for each g € C*(R™ X R, R") the periodic solution x = X()
of system (13) is (g, 1)-structurally stable, we obtain the classical statement of
the problem for the existence of periodic solution of the perturbed system (14).
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Let A(t) = D f(x)|,=x, and A*(r) be the transposition of A(r). We
consider the system

X=A@x, xelk” o))
and its conjugate system
b= —A*0Y, el (20)

Let ($(2), ..., D), d =< n, be a basis for the space of all periodic
solutions of (20). We set

by = j <J:,-(t), g—g (), 0)> dt 2D
0 €

where i € {1,...,d},j € {1,...,m}; (-, -) is the Euclidean scalar product
in R"; B = (b;) denotes the d X m matrix with elements (21). Let B, be the
matrix with elements b;, i € {1,...,k},je (l,... . k},k=d.

Theorem 1. Let hypotheses (H1) be valid and let rank B = d. Then the
periodic solution x = X(t) of system (13) is (g, d)-structurally stable. More-
over, there exists a number ry > 0 such that if x = X,(¢) is a periodic solution
of the system (17) and

{x(n:t e R} C le[LOJ ) {Br(xX(2), ro)}

then the period of x = X,(f) is w.
Proof. Let x = x(t) be a solution of (13). We set
¥ = x(t) = X(1)
X ={ye CR,RY: yt + w) = y(t),t € R}, Y = R"
FFEXR"oZX,  F,e=y—fly+X1) + fG@1) — gy + x(1), €

The set € with scalar product (y;, y2) = [§ (y1(8), y,(2)) dt, y,, y, € ¥, and
corresponding norm is a Hilbert space.
We shall consider the equation

F(y,e)=0 (22)

First, we shall verify conditions 1 and 2 of Lemma 1.

1. Obviously, F is a C®-smooth map; if y(t) = 0,7 € R, and € = 0,
then F(0, 0) = 0.

2. From the definition of the map F, it follows that
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D,F(0, 0)y = y — D f(x(t))y — D,g(x(1), O)y =y — A(t)y  (23)
D,F(0, 0)e = —D,g(x(1), O)e
Without loss of generality, we suppose that det B, # 0.
Lete € R™" € = (!, €?), €' =(e),...,€) € RY, € = (€41, . .., €)
e R4 W = {(e!, 0) € R™ €' € RY}.
First, we shall prove that im D,F(0, 0) N im D F(0, 0)l4 = (O}.
Indeed, let us suppose that there exists € € W\{0} such that D_F(0, O)e
€ im D, F(0, 0). Then there exists n € #\{0} such that D F(0, 0)e = D, F(0,
O)n, i.e., m = () is a solution of the system
M — A(t)n = ~D.g(x(t), 0)e 24)

From Hartman (1964, Chapter XII, Theorem 1.2), it follows that the
system (24) has a solution if and only if

J (D0, Dg(x(2), 0)) dr = 0 (25)
0

foralli e {1,...,d]}.
Therefore

= fw (Pi(0), D g(x(r), 0)e) dt
0

n

d 0
ZI q,lk()z_g&) jdt
0

k=1 _[

ag(x(), 0)
o[ (b 2522 a

b€+ 2 buij
t

j=d+

Il
s

#

J

I
pMe

-~
it

where l,Li(t) = (‘I’il(t)v R lI’in(t)) and g(x, E) = (gl(xv €), ety g,,(x, G)) From
the definition of the space W it follows thate; = 0,j € {d + 1,..., m}.
Hence 34| b;i€; = 0. The obtained equality contradicts det B, # 0. Therefore,
if € € W\{0}, then D F(0, O)e ¢ im D,F(0, 0).

From (23) it follows that ker D, F(0, 0) consists of all w-periodic solutions
of the system y = A()y, i.e., dim ker D, F(0, 0) = d = dim W. Hence formula
(3) is true.

We shall prove the Fredholm condition (12). From Hartman (1964,
Chapter XII, Theorem 1.1) it follows that the system y — A(f)y =0,y € &,
has a solution if and only if the system y — A(f)y = h(t), h € ¥\im D, F(0,
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0), has no solution y € ¥. But the system y — A(f)y = 0 has exactly d
linearly independence solutions in space &. Therefore, dim coker D, F(0, 0)
= d, i.e., the formula (12) is valid.

Hence, condition 2 of Lemma 1 follows from Lemma 2.

Therefore, there exist a number r; > 0 and unique smooth maps y:
Bgm-d(0, 1)) > &, v — y,, and €: Bgm—4(0, r;) > R™, v — €, such that y, =
0, € =0, and

F(y,e)=0 forany v e Bgm-4(0, r))
Thus
) — fy(0) + X(0) + fx() — gy() + X(¢), &) =0
Writing x,(f) = y(?) + x(z), we obtain that
x(8) = fx(0) + g(x,(0), €,)

i.e., the function x, € & is a solution of the perturbed system (17) for any
v € Bgm-4(0, r)).

Theorem 1 is proved.

Let

Bim+1 = f i (W), X()) dr (26)
0

where i € {l, ..., d}, By = (b;) denotes the d X (m + 1) matrix with
elements (21) and (26).

Theorem 2. Let hypotheses (H1) hold and let rank B, = d. Then the
periodic solution x = X(¢) of the system (13) is (g, d)-structurally stable.

Proof. The proof of Theorem 2 is similar to the proof of Theorem 1,
except for the choice of the function F. Thus we sketch only some steps of
the proof.

We set

y(t, o) = x(t + at) — X(1), a e R
Z={yeCR,RY: y(t + w,a) = y(t, a), t € R}, Yy =R"
F: ¥ X R 5 R”

F(y, (o, €)) = y(t, @) — f(¥(t, &) + X(1) + fx(@®) — g(y(t, @) + X(1), €)

where x = x(¢) is a solution of (13) and the set ¥ with scalar product (y,,
y2) = [8 (0, yA0)) dt, y,, y, € ¥, and the corresponding norm is Hil-
bert space.
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Then:
1.LIfa =0,y(¢) =0,t € R, and € = 0, then F(0, (0, 0)) = 0.
2. From the definition of function F it follows that

D,F(0, (0, 0)) = y — Df(x())y — D.gx(1), 0)y = y — A(t)y
Obviously

D y(t, @)yyu0=0 = £(2)
because if y(¢, 0) = 0O, then x(f) = X(¢). Analogously, we have
D, y(t, @)iy0=0 = X() + 6x(f)

Therefore
Do F(O, (0, 0))(a, €)

= Do y(t, Wye0=0 = DSEE)Do YL, d)iye0)=0 — Deg(X(2), 0)e

= %0 + () ~ DERONE() — Deg(R(0), O)e

= X(t) — Dg(x(1), O)e

because x = X(¢) is a solution of (13), i.e., X(t) — D fG(ENX(?).
The assumption D, , F(0, (0, 0))(a, €) € im D, F(0, 0) for some (a, €)
e R"*™ is equivalent to the existence of 7 € ¥ such that

M — A = X(1) — Dg(x(2), 0)e (27)
The system (27) has a solution m = mg(f) € & if and only if

J W), X(t) — D g(x(t), 0)e) dt = 0, ief{l,...,d} (28)
0

From the formula (28) and condition rank By = d it follows that there
exists a d-dimensional space ‘W C R'™ such that im D,F(0, (0, 0)) N im
D(a,e)F(Ov (07 0))|°W' = {0}

From D, F(0, (0, 0)) = y — A(9)y, it follows dim ker D,F(0,0) = d =
dim W. Hence formula (3) is true.

The proof of the Fredholm condition (12) is analogous to the correspond-
ing part of the proof of Theorem 1.

Therefore, there exist a number r; > 0 and unique smooth maps y:
Bpm-d(0, r)) = &, v o y,, € Bgm-4(0, r;) - R™, v — €, and a: Bgm-4(0, r))
= R,v > a,suchthaty, = 0, ¢ = 0, ag = 0, and

F(y,(e,a,)) =0 for any v e Bgm-d4(0, r\)
Thus
¥t o) = f(nle, ) + X)) + (D) — gyt o) + X(0), €) =0
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Writing x,(f) = y,(t, a,) — X(#), we obtain that
x,(t) = flx, () + g(x(1), €)

i.e., the function x, € ¥ is a solution of the perturbed system (17) for any
v € Bpm-4(0, ).
This completes the proof.

Example 1. Consider the following system (Nemitsky and Stepanov,
1949, Chapter II, §5):
X = Plxy, x) = —x + 04 + x5 — P! (29)
X = Qx1, x) = x; + x;(xf + 5 — P!

and its perturbed analog
Xl = —X + xl(x% + x% - 1)2P+1 + gl(xl’ X2, E) (30)
Xy = Xy + X2(x% + x% - l)sz + gZ(xh X2, E)

where x = (x;, x,), p = 1, the function g = (g, g,) satisfies hypotheses
(H1), and € € R.

Obviously, the system (29) has a unique periodic solution {(x;, x3): x;
= cost,x; =sint, t € R}.

Let

(P(x,, x3), Q(xy, x2))

o(x1, x3) [

A@) =
o} + 53— D¥[p + 3 + 1§ — 1]
o1+ 2(2p + Dxpe(d + 3 — 1)2P

-1+ 2(2p l)xlxz(xl + 12 - 1)2[1
G+ - D¥3+ @p+ 33— 1] K]

o -1
10
Therefore, {{;, U}, where §i; = (cos ¢, sin £) and {5, = (—sin ¢, cos 1),
is a basis for the system { = A()Y, ¥ € R

xp=cos t
=sin 1

Thus if
2w a
by = f <\b,, (-a— (cos ¢, sin ¢, 0) (cos t, sin ¢, O))>dt # 0,
0
i=1lor2

then the system (30) has a 2m-periodic solution (see Theorem 1).
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For example, if g (x,, x2, €) = €x|, g2(x), X5, €) = €x,, then the system
(30) has a 2-periodic solution.

Example 2. Consider the two-dimensional system
X1 = ax; + €gy(xy, x2) (31)
X = —ax; + €gy(xy, x)

where a, € € R, a # 0, g,, g2 € C(R?, R).
A classical result due to Poincaré states that if the functions g, and g,
satisfy the symmetry condition

8i(—xi, X2) = —gilxy, Xx2), 82(—xy, X2) = galxy, xp) (32)

then (31) has periodic solution with period near 2w/l al for sufficiently small
€. In the present example, we shall apply Theorem 1 to prove that if equations
(32) are valid and if

2m/al
f g:(sin at, cos at)sin at + g.(sin at, cos at)cos at dt ¥ 0
0

then (31) has 2m/lal-periodic solution for sufficiently small e.

The system X, = ax,, X; = —ax, has 27/lal-periodic solution X,(f) =
sin at, X,(f) = cos at. Moreover, {{;, {5}, where ), = (sin at, cos ar), J,
= (—cos at, sin a?) is a basis for the space of all solutions of the system {s
= AP, ¢ € R%, A(®) = [%, &. Let us calculate

27/lal
bll = J ('Ll(t)v (gl(xl(t)’ EZ(t)), gZ(El(t)i XZ(t)))) dt

0

/lal
= J g:(sin at, cos af)sin at + g,(sin at, cos at)cos at dt

—mn/lal

w/lal
=2 J g1(sin at, cos af)sin at + g,(sin at, cos at)cos at dt # 0
0.

Therefore (see Theorem 1), there exists r;, > 0 such that if lel < r,,
then the system (31) has 2m/lal-periodic solution.

Let us remark that Theorem 2 cannot apply to the system (31), because
rank By = 1, min{d, m + 1} = 2.

Before giving some particular cases of Theorems 1 and 2 we shall prove
the following lemma.

Lemma 3. Let hypotheses (H1.1) and (H1.2) be valid. Then the following
two statements are equivalent:
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1. [& (o), X(r)) dt # O for some i € {1, ...,d}.
2. 1 is a simple characteristic multiplier for (19).

Proof. In Hartman (1964, Chapter XII, Lemma 1.1) it is proved that the
system (13) has nontrivial periodic solution x = X(f) if and only if 1 is a
characteristic multiplier for (19).

Let us suppose that 1 is a nonsimple characteristic multiplier for (19).
Then there exist matrices A,(f), Ax(t), and As(¢) such that:

1. A|(¢) is a nonsingular periodic matrix. The last column of A,(f) is
x(0).

2. A,(#) is a nonsingular matrix.

3. If X(¢) is a fundamental matrix of (19), then

A1) 0
no=mmAﬂ)[:?]
where 0 is a zero matrix with proper dimension.
Then
' . Ay (D 0 J AxD) 0
X = A0 4 E ﬂ A0 7| a0 D ﬂ
or
i A 0 YA 0 77
A = | X0 = A 4 ﬁ ﬂ AD B ﬂ

But X(f) = A()X(t) and
[A(?) 0 -1 A YD) 0

1 0 = 1 0

Am=ﬁlﬂ%mm)

where

(Horn and Johnson, 1986, §0.7.3).
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Therefore

A1) 0 A7) 0

A1) = AMA) — A As(®) [0 O] Aqt) [1 O]
t 0 -t 1

Thus the (n — 1)th column a,_ (f) of A\(¢) satisfies
dn—l(t) = A(t)an~l(t) - '-i(t)
Consequently (Hartman, 1964, Chapter XII, Theorem 1.2)
f @), Xy dt =0, ie(l,...,d} (33)
0

Equation (33) contradicts assumption 1 of the lemma.
Lemma 3 is proved.

Corollary 1. Let the hypotheses (H1) be valid and let
J o), X)) dt # 0 forsome ie {1,...,d}
0

Then the periodic solution x = X(f) of system (13) is structurally stable,
i.e., for any g € C*(R", R"), g(x, 0) = 0, (9g/dx)(x, 0) = O there exists & >
0 such that the system

x = f(x) + glx, v), v e (-9, )
has a periodic solution x = X,(f) and

lim ||X(r) — X,(0[| = 0
lIvil—0

The proof of Corollary 1 follows from Theorem 2.

Corollary 2. Let the hypotheses (H1) be satisfied and let | be a simple
characteristic multiplier for (19). Then the periodic solution x = X(f) of the
system (13) is structurally stable.

The proof of Corollary 2 follows from Theorem 2 and Lemma 3.

Remark 3. One may find theorems analogous to Corollary 2 in Hartman
(1964, Chapter XII, Theorem 2.2) or Rouche et al. (1977), where the proof
is based on the classical Implicit Function Theorem. Thus Theorems | and
2 generalized cited results.

Remark 4. The following well-known result immediately follows from
Corollary 2. If the periodic solution x = X(t) of the system (13) is hyperbolic,
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then it is structurally stable [for the definition of a hyperbolic periodic orbit of
an autonomous system see Palis and De Melo (1982, Chapter 3, §§1.2—1.3)].
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